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Abstract

Background—Arsenic has immunomodulatory properties and may have the potential to alter 

susceptibility to infection in humans.

Objectives—We aimed to assess the relation of arsenic exposure during pregnancy with immune 

function and hepatitis E virus (HEV) infection, defined as seroconversion during pregnancy and 

postpartum.

Methods—We assessed IgG seroconversion to HEV between 1st and 3rd trimester (TM) and 3 

months postpartum (PP) among 1100 pregnancies in a multiple micronutrient supplementation 

trial in rural Bangladesh. Forty women seroconverted to HEV and were matched with 40 non-
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seroconverting women (controls) by age, parity and intervention. We assessed urinary inorganic 

arsenic plus methylated species (∑As) (µg/L) at 1st and 3rd TM and plasma cytokines (pg/mL) at 

1st and 3rd TM and 3 months PP.

Results—HEV seroconverters’ urinary ∑As was elevated throughout pregnancy. Non-

seroconverters’ urinary ∑As was similar to HEV seroconverters at 1st TM but declined at 3rd TM. 

The adjusted odds ratio (95% confidence interval) of HEV seroconversion was 2.17 (1.07, 4.39) 

per interquartile range (IQR) increase in average-pregnancy urinary ∑As. Increased urinary ∑As 

was associated with increased concentrations of IL-2 during the 1st and 3rd TM and 3 months PP 

among HEV seroconverters but not non-seroconverters.

Conclusions—The relation of urinary arsenic during pregnancy with incident HEV 

seroconversion and with IL-2 levels among HEV-seroconverting pregnant women suggests 

arsenic exposure during pregnancy may enhance susceptibility to HEV infection.
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1. Background

Arsenic represents a major threat to global health, with millions of people exposed through 

contaminated food and water, particularly in areas of the world where arsenic is naturally 

occurring in the environment (IARC, 2012). In Bangladesh, an estimated 45 million people 

are exposed to arsenic concentrations in drinking water greater than the World Health 

Organization (WHO) guideline value (10 µg/L) and 20 million people are exposed to 

concentrations greater than the Bangladeshi national standard (50 µg/L) (Flanagan et al., 

2012). A recognized toxicant (IARC, 2012) and carcinogen (IARC, 2012), arsenic has been 

related to increased risk of cardiovascular, lung, kidney, bladder, skin, prostate, and liver 

disease (IARC, 2012; Liu and Waalkes, 2008; Wu et al., 2014). Arsenic has also been linked 

to increased systemic inflammation via oxidative stress (Ahmed et al., 2011) and chronic 

metabolic disorders including diabetes (Navas-Acien et al., 2008). Appreciation of the 

immunotoxic effects of arsenic and its potential to alter immune function is emerging 

(Dangleben et al., 2013). Laboratory studies reveal that arsenic inhibits antigen-presentation 

of macrophages (Banerjee et al., 2009) and T cell proliferation (Soto-Pena and Vega, 2008), 

decreases CD4+ T cell numbers in the spleen (Sikorski et al., 1989), and suppresses contact 

hypersensitivity responses (Patterson et al., 2004). The ability of arsenic to alter 

susceptibility to infection by affecting immune response is becoming increasingly 

recognized (Bailey et al., 2013; Farzan et al., 2013b; Kozul et al., 2009; Rager et al., 2014).

Pregnancy represents a unique period of susceptibility to infection (Kourtis et al., 2014) in 

part because of a shift toward an anti-inflammatory immune response (Kraus et al., 2012) 

due to changes in estrogen and progesterone levels (Shelly et al., 2012). No studies, to our 

knowledge, have investigated the dynamics of specific objectively measured infections 

among pregnant women exposed to arsenic. One study among 140 pregnant women in 

Matlab, Bangladesh, showed that increasing urinary arsenic concentrations were associated 

with increasing frequency of self-reported days of fever and diarrhea during pregnancy 
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(Raqib et al., 2009). Though this study lacked objective measures of specific infections, its 

findings suggest a possible involvement of arsenic exposure in susceptibility to infection 

during pregnancy. Most attention has focused on the relation of in-utero arsenic exposure 

with the fetal immune repertoire (Nadeau et al., 2014) and infectious outcomes during early 

childhood (Farzan et al., 2013a,, 2013b; Rahman et al., 2011). Studies have also shown that 

in-utero and childhood arsenic exposure can alter vaccine immune responses in children 

(Ahmed et al., 2014; Saha et al., 2013). This emerging literature reflects a growing 

understanding of the immunomodulatory properties of arsenic; however, whether (and how) 

this affects susceptibility to specific infections in humans is not well understood.

Hepatitis E virus (HEV) is a non-enveloped positive-strand RNA virus, transmitted 

primarily via the fecal-oral route (e.g., contaminated surface water). HEV infection can be 

measured objectively via assessment of anti-HEV IgG seroconversion (Innis et al., 2002). 

Among individuals who seroconvert, HEV infection can be either asymptomatic or cause 

disease (hepatitis E) which is usually self-limited. However, some individuals with hepatitis 

E experience severe disease, known as acute fulminant hepatitis. HEV is a leading global 

cause of acute viral hepatitis (Mahtab et al., 2009; Rein et al., 2012) and causes significant 

morbidity and mortality during pregnancy (Labrique et al., 2012), particularly in South Asia 

where seasonal floods and poor sanitation have led to widespread contamination of surface 

water supplies with HEV and large epidemics of HEV infection (Gurley et al., 2014; 

Labrique et al., 2010). For reasons that are unclear, the case-fatality rate is markedly 

elevated (10–40%) in some pregnant women infected with HEV in South Asia, compared to 

the general population (3%) (Hamid et al., 1996; Tsega et al., 1992).

Although the liver is a known target of arsenic carcinogenesis (Liu and Waalkes, 2008) and 

emerging data support arsenic immunotoxicity (Stone, 1969), whether arsenic exposure 

during pregnancy can enhance susceptibility to objectively measured HEV infection during 

pregnancy has not been investigated. The aims of this nested case-control study were to 

assess arsenic exposure during pregnancy and evaluate its association with incident HEV 

seroconversion and changes in cytokine concentrations.

2. Methods

2.1. Study population and assessment of HEV seroconversion

Women in this nested case-control study were participants in a cluster-randomized, 

controlled trial of antenatal multiple micronutrients (15 vitamins and minerals including 

iron-folic acid) at a dietary reference intake (RDA) versus iron-folic acid alone in 

Gaibandha, Bangladesh to assess the impact of antenatal supplementation on infant 

mortality and adverse birth outcomes (West et al., 2013,, 2014). Of the 44,567 pregnancies 

enrolled into the trial, 1526 women from a limited geographic area (−450 km2) contributed a 

blood sample at 1st and 3rd trimester (TM) and 3 months postpartum (PP) as part of a more 

intensive biospecimen sub-study. The samples from the first available 1100 women were 

assessed for incident IgG seroconversion to HEV at the 1st and 3rd TM and 3 months PP 

using a well-characterized National Institutes of Health reference enzyme immunoassay 

(EIA) (Tsarev et al., 1993). The sensitivity of this anti-HEV IgG EIA is 96% and the 

specificity is 98% (Engle et al., 2015; Mast et al., 1998). Among the 1100 women, 39 

Heaney et al. Page 3

Environ Res. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



women seroconverted between the 3rd TM and 3 months PP and 1 woman seroconverted to 

HEV between the 1st and 3rd TM. These 40 women (cases) were matched with 40 non-

seroconverting women (controls) by age, parity, and intervention group. All procedures 

were approved by the Johns Hopkins Bloomberg School of Public Health Institutional 

Review Board (IRB 00000570) and the Bangladesh Medical Research Council 

(BMRC/ERC/2007–2010 935) and the trial was registered at ClinicalTrials.gov 

(NCT00860470).

2.2. Urine arsenic analysis

Total arsenic and arsenic species concentrations were measured in spot urine samples of the 

40 HEV seroconverting (cases) and 40 non-seroconverting (controls) women at 1st and 3rd 

TM. The analyses were conducted at the Trace Element Laboratory of the Institute of 

Chemistry-Analytical Chemistry, University of Graz, Austria. All samples were analyzed 

blinded to HEV seroconversion status. The analytical methods used to perform arsenic and 

arsenic species analysis and the associated quality control criteria have been described in 

detail (Scheer et al., 2012). In brief, total arsenic concentrations in urine were measured 

using inductively coupled plasma mass spectrometry (ICPMS) (Agilent 7700x ICPMS, 

Agilent Technologies, Waldbronn, Germany). Arsenic species were measured by high 

performance liquid chromatography (HPLC)-ICPMS (Agilent 1100 HPLC and Agilent 

7700x ICPMS). Urinary arsenic analysis variables were adjusted for urine dilution using 

specific gravity. The method limits of detection were 0.1 µg As/L for all the species. A total 

of 4% of participants were < LOD for arsenobetaine, 7.5% < LOD for inorganic arsenic, and 

0% < LOD for all other arsenic species. In previous population-based studies, the inter-assay 

coefficients of variation for inorganic arsenic, methylarsonic acid (MMA), dimethylarsinic 

acid (DMA) and arsenobetaine plus other arsenic cations in the in-house reference urine 

were 6.0%, 6.5%, 5.9% and 6.5%, respectively (Scheer et al., 2012). The median 

(interquartile range) of arsenobetaine and other arsenic cations was 1.0 (0.6, 1.7) µg As/L 

confirming that seafood intake was relatively low in the population. We used the sum of 

inorganic and methylated arsenic species (∑As) in urine as the biomarker of inorganic 

arsenic exposure. To assess arsenic metabolism, we calculated the relative proportion of 

inorganic and methylated arsenic metabolites in urine to their sum: % inorganic arsenic, % 

MMA and % DMA (Vahter,2000).

2.3. Cytokine analysis

Plasma cytokine measurements have been described in detail elsewhere (Kmush et al., In 

press). In brief, cytokine levels of all HEV seroconverting and non-seroconverting women 

were determined by the electrochemiluminescence-based Meso Scale Discovery (MSD) 

immunoassay in the format of the Human Th1/Th2 10-Plex Ultra-Sensitive Kit for IFN-γ, 

IL-10, IL-12, IL-13, IL-1β, IL-2, IL-4, IL-5, IL-8, and TNF-α according to manufacturer 

protocols (Meso Scale Discovery, Gaithersburg, MD). Plates were read using the SECTOR 

Imager 2400 and data acquired using Discovery Workbench 3.0 software (Meso Scale 

Discovery, Gaithersburg, MD). For all cytokine concentrations below the lower limit of 

detection (LOD), one-half the LOD was imputed. The limit of detection for cytokines was as 

follows: IFN-γ = 0.3 pg/mL, IL-10 = 1.2 pg/mL, IL-12 = 0.7 pg/mL, IL-13 = 3.3 pg/mL, 

IL-1β = 0.5 pg/mL, IL-2 = 0.4 pg/mL, IL-4 = 1.1 pg/mL, IL-5 = 0.1 pg/mL, IL-8 = 0.4 
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pg/mL, and TNF-α = 0.2 pg/mL. We did not include in the analyses the cytokines with 

greater than 20% of samples below the LOD at one or more of the pregnancy time points 

(i.e., IL-1β, IL-4, IL-13).

2.4. Demographic and nutritional factors

Micronutrient measurements have been described in detail elsewhere (West et al., 2014). As 

part of participation in the trial of antenatal multiple micronutrients (West et al., 2014), 

women provided information during their 1st TM about sociodemographic (age, parity, 

gestational age at enrollment, living standards index) and nutritional (food intake) factors. 

Trained anthropometrists measured women's weight, body mass index [BMI], and middle-

upper arm circumference [MUAC]. Information about the season of enrollment (summer, 

rainy, winter) was also collected.

2.5. Statistical analysis

For demographic, nutritional and environmental factors we examined differences using the 

Wilcoxon rank sum test for continuous variables (mean [standard deviation]) and the 

proportion test for categorical and binary variables. Urinary arsenic, arsenic species and 

plasma cytokine data were ln-transformed before analysis. Differences in median 

(interquartile-range [IQR]) urinary arsenic and arsenic species concentrations by HEV 

seroconversion status were assessed by Fisher's exact test of the equality of medians, 

comparing HEV seroconverters to non-seroconverters. We also examined differences in 

urinary arsenic and arsenic species concentrations across pregnancy time points, comparing 

3rd to1st TM using Fisher's exact test of the equality of medians. To visualize median trends 

across 1st and 3rd TM of pregnancy, we plotted the median of urine ∑As concentration 

(µg/L) for each woman and the overall group median trend, by HEV seroconversion status. 

Due to the non-independence of repeated measurements within person, we also examined 

longitudinal associations of changes in mean ∑As concentration (µg/L) across pregnancy 

time points by fitting generalized linear mixed regression models.

Odds ratios and 95% confidence intervals of the urinary arsenic-HEV seroconversion 

association were estimated using conditional logistic regression models. Models were 

adjusted for potential determinants of immune response to infection that could also be 

related to arsenic exposure or metabolism – living standards index, folate, vitamin D, and 

zinc. We used the Fisher's exact test of the equality of medians to assess differences in 

median (IQR) plasma cytokine concentrations by HEV seroconversion status and also 

between adjoining pregnancy time points (1st TM, 3rd TM, 3 months PP) within each 

seroconversion group (i.e., comparing 1st to 3rd TM; comparing 3rd TM to 3 months PP). 

We used generalized linear mixed regression models to estimate the changes in plasma 

cytokine concentrations at 1st and 3rd TM and 3 months PP – included as dependent 

variable in model – for an IQR-unit change in urinary ∑As at 1st and 3rd TM and the 

average of 1st and 3rd TM ∑As (as a measure of average pregnancy arsenic exposure) – 

included as independent variables in separate models – by HEV seroconversion status. 

Multiplicative interaction coding between ∑As and HEV seroconversion status variables 

was used in generalized linear mixed regression models to examine potential effect measure 

modification by HEV seroconversion by comparing a model with interaction terms to a 
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model without using a likelihood ratio test. All analyses were completed using Stata version 

11 (StataCorp LP, College Station, Texas, USA).

3. Results

3.1. Participant characteristics by HEV seroconversion status

HEV seroconverting (cases) and non-seroconverting (controls) women were similar by the 

matching factors (age, parity, and intervention group) as well as other sociodemographic, 

nutritional, anthropometric and pregnancy-related factors (Table 1). There was also no 

difference by season of enrollment over the 4-year period between groups

3.2. Urinary arsenic levels during pregnancy and HEV seroconversion

First TM median and IQR ∑As concentrations in urine were similar among HEV 

seroconverters (median 65.6 µg/L; IQR 40.8, 132.8 µg/L) and non-seroconverters (61.6 

µg/L; 37.0, 82.2 µg/L) (p = 1.0; Table 2). Urinary concentrations of ∑As remained high in 

the 3rd TM among HEV seroconverting women (64.7 µg/L; 26.2, 105.9 µg/L), but declined 

in the 3rd TM among non-seroconverting women (35.9 µg/L; 25.6, 77.4 µg/L) (p = 0.002; 

Table 2; Fig. 1). During the 1st TM of pregnancy, non-seroconverting HEV women had 

higher % DMA (median 80.3%; IQR = 75.6, 82.9%) in urine compared to seroconverting 

women (76.7%; 74.3, 80.5%) (p = 0.003; Table 2).

Increasing urinary arsenic concentration during the 1st TM of pregnancy was associated 

with increasing odds of incident HEV seroconversion. The adjusted odds ratio (95% 

confidence interval [CI]) of incident HEV seroconversion was 2.06 (1.07, 3.97) for every 

IQR-unit increase in 1st TM urinary ∑As concentration (Table 3). A similar association was 

observed for the average of 1st and 3rd TM urinary ∑As concentration (odds ratio 2.17, 95% 

CI 1.07, 4.39) (Table 3). Arsenic methylation profiles were non-statistically significantly 

associated with incident HEV seroconversion. The adjusted odds ratio (95% CI) per IQR-

unit increase in average 1st and 3rd TM % MMA was 1.77 (0.84, 3.74) (Table 3). The 

corresponding odds ratio for % DMA was 0.69 (0.38, 1.25) (Table 3).

3.3. IL-2 and urinary arsenic levels by HEV seroconversion status

The median plasma concentration of IL-2 was 1.73 (IQR 1.22, 2.61), 1.78 (IQR 0.90, 3.28) 

and 2.71 (IQR 1.65, 3.95) pg/mL at 1st TM, 3rd TM and 3 months PP, respectively among 

HEV-seroconverting women and was 1.69 (IQR 0.83, 2.58), 1.75 (IQR 1.05, 2.68) and 1.94 

(IQR 1.51, 2.66) pg/mL at 1st TM, 3rd TM and 3 months PP, respectively among non-

seroconverting women. HEV seroconverting women had higher levels of IL-2 compared to 

non-seroconverting women at 3 months PP (p = 0.04). Among HEV seroconverting women, 

an IQR-unit increase in 1st TM ∑As was associated with a 0.46 pg/mL (95% CI 0.23, 0.68; 

p < 0.0001) increase in plasma IL-2 concentration across the 1st TM, 3rd TM, and 3 months 

PP (Table 4). The corresponding increase in plasma IL-2 concentration across the 3rd TM 

and 3 months PP for an IQR-unit increase in mean 1st and 3rd trimester pregnancy ∑As was 

0.35 pg/mL (95% CI 0.12, 0.58; p < 0.003) among HEV seroconverting women (Table 4). 

Associations of urinary ∑As with IL-2 among non-seroconverting pregnant women were 

around the null (Table 4). We observed evidence of effect measure modification 
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(heterogeneity) of ∑As-IL-2 associations by HEV seroconversion status for 1st TM ∑As (χ2 

(1 df) 5.19, p < 0.02) and average ∑As (χ2 (1 df) 3.25, p < 0.07) (Table 4). Although other 

cytokines varied significantly over time within HEV seroconverters (IFN-γ, TNF-α, and 

IL-5) and non-seroconverters (IL-8 and IL-5) and by HEV seroconversion status (IL-8, 

IL-10, IL-12) (Supplemental Data File Table S1), none showed an association with urinary 

arsenic concentrations within strata of HEV seroconversion status as observed for IL-2 (data 

not shown).

4. Discussion

Results of this study suggest that elevated urinary arsenic levels during pregnancy may be 

related to HEV seroconversion. In the 1st TM, prior to HEV seroconversion, urinary ∑As 

levels were similar between women who later went on to seroconvert to HEV and those who 

did not. By the 3rd TM, however, urinary ∑As levels decreased significantly among non-

seroconverters, while urinary ∑As levels did not decline among HEV seroconverters. Higher 

urinary arsenic levels during early pregnancy and on average across pregnancy were 

associated with incident HEV seroconversion, particularly after adjustment for 

socioeconomic factors and nutritional biomarkers. Although the sample size was relatively 

small, strengths of the study include the prospective design, high quality exposure and 

outcome assessment, adjustment for relevant confounders and the evaluation of immune 

markers.

The biological basis of enhanced susceptibility to HEV seroconversion among women with 

high urinary inorganic arsenic levels during pregnancy is supported by knowledge of arsenic 

hepato- and immunotoxicity. The liver is a primary target site of arsenic metabolism, which 

involves biomethylation through one-carbon metabolism into monomethylated and 

dimethylated arsenic species (Vahter, 2009). As one-carbon metabolism increases during the 

course of pregnancy, the methylation of inorganic arsenic into dimethylated arsenic species 

typically increases, (Gardner et al., 2011) resulting in increased proportion of DMA in urine. 

(Vahter, 2009) DMA is considered a less toxic metabolite than MMA and we found that 

HEV seroconversion was associated with higher % MMA and lower % DMA in urine, 

especially during the 1st TM of pregnancy, although the model estimates were imprecise, 

likely due to the small sample size. The association of higher % MMA and lower % DMA 

with increased risk of disease has been shown for cardiovascular disease and cancer in other 

studies (IARC, 2012; Wu et al., 2014). These results could identify an adverse profile of 

arsenic-related metabolism that is associated with increased risk of HEV seroconversion 

among pregnant women.

Arsenic is known to alter key functions of the innate and adaptive immune system. Arsenic 

has been shown to disturb innate immune responses, including the inhibition of macrophage 

function (Banerjee et al., 2009). Such disturbance of innate immune responses is believed to 

be one potential contributor to the increased frequency of symptoms of respiratory tract 

infections, diarrhea, and fever among arsenic-exposed pregnant women (Kile et al., 2014; 

Raqib et al., 2009). During pregnancy the immune response is associated with a shift to an 

anti-inflammatory or Th2-type response (Chaouat et al., 1997). While beneficial for the 

outcome of pregnancy, reduced inflammatory processes may enhance women's 
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susceptibility to certain infections that require Th1-type immunity for clearance. Th1- and 

Th2-type responses transcriptionally down-regulate each other – a strong Th2-type response 

should reduce a Th1-type response and vice-versa (Lee et al., 2006; Spilianakis and Flavell, 

2007). Research suggests that arsenic exposure may exacerbate anti-inflammatory immune 

responses during pregnancy (Cho et al., 2012), which could further enhance susceptibility to 

infection, particularly viral infections that require Th1-type immune responses for successful 

clearance. It is possible that arsenic exposure during pregnancy may alter Th1-type immune 

responses resulting in susceptibility to seroconversion and viral infection at a lower 

challenge dose of virus than in the absence of arsenic exposure. A compromised immune 

response, increasing morbidity, and higher pulmonary viral titers were observed following a 

sub-lethal influenza virus challenge dose in mice exposed to arsenic relative to arsenic 

unexposed mice (Kozul et al., 2009), but human population-based studies of arsenic 

immunotoxicity and infection among pregnant women are lacking. We could not investigate 

whether arsenic-induced immune alteration is related to symptomatic HEV disease because 

pregnant women in our study did not experience symptomatic HEV disease (as reflected by 

anti-HEV IgG seroconversion without reports of acute viral hepatitis symptoms).

Arsenic is known to impair adaptive immunity. It is recognized that arsenic delays or 

inhibits adaptive T-cell immune response. One mechanism that has been described in detail 

is the delay of T cell proliferation (Soto-Pena and Vega, 2008), and promotion of T cell 

anergy, senescence or tolerance (Soto-Pena et al., 2006) after arsenic exposure. Impairment 

of T cell proliferation has been shown to have adverse effects when an infectious agent 

(such as HEV) is encountered because a delayed or ineffective T-cell response (Galicia et 

al., 2003), combined with ineffective innate immune response, could enhance susceptibility 

to infection. Among the cytokines examined in this study, IL-2, an indicator of immune 

activation, were higher in HEV seroconverters and its levels showed a significant positive 

association with urinary arsenic concentration only among pregnant women who 

seroconverted to HEV, potentially indicating there was activation of the immune response 

by arsenic. IL-2 plays a critical role in initiating the adaptive immune response and T cell 

proliferation. Laboratory studies suggest that after inducing an initial delay in IL-2 

production, arsenic may subsequently induce a “ramping-up” of IL-2 production to achieve 

an effective adaptive immune response (Soto-Pena et al., 2006; Soto-Pena and Vega, 2008). 

This is supportive of a possible role of arsenic exposure in the dynamics of HEV 

seroconversion, and future studies involving functional measures of immune response (e.g., 

immune cell populations, immunoglobulin isotypes) could improve understanding of this 

exposure–response relationship.

Limitations of the study include a small sample size and a lack of assessment of arsenic in 

drinking water and food. However, we measured urine arsenic, which is a well-established 

biomarker that integrates all sources of arsenic exposure (including drinking water and 

food). The observed differences in urinary arsenic levels were unlikely due to changes to an 

alternative water supply because sources of drinking water in the study area remained 

constant, nor was it likely due to differences in hydration status since all analyses were 

adjusted for urine dilution via specific gravity. Future studies should measure arsenic and 

pathogens in water and food and assess urinary arsenic levels during the postpartum period 

to address these limitations.
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Despite the small sample size, important strengths of the study include use of a prospective 

design, nested within a large cohort, objective measures of arsenic exposure in urine, 

objective assessment of outcome (incident seroconversion) for a pathogen that causes a 

significant burden of morbidity and mortality in pregnancy (HEV), measurement of pro- and 

anti-inflammatory cytokines in plasma, the inclusion of objectively measured micronutrients 

as confounders, and the availability of repeated measurements during pregnancy and 

postpartum. These strengths represent an improvement on previous studies of arsenic 

exposure and infection during pregnancy because most involved classification of exposures 

or outcomes via participant self-reports of symptoms (Kile et al., 2014; Raqib et al., 2009). 

Anti-HEV IgG seroconversion constitutes incident HEV infection; however, pregnant 

women who seroconverted to HEV in our study did not report symptoms of acute HEV 

disease – e.g., none reported icterus, fever, clay-colored stools during the follow-up period. 

Our findings may therefore provide important insights into the dynamics of arsenic exposure 

with early sentinel immune responses and asymptomatic infection and could inform novel 

hypotheses for future research of symptomatic HEV infection during pregnancy in 

population-based and clinical settings.

The possibility of reverse causation should be considered. Pregnant women who 

seroconverted to HEV may have experienced a cascade of events related to viral 

seroconversion that could have led to reduced metabolism of arsenic in the liver and thus 

resulted in higher unmethylated arsenic, which has a longer half-life than methylated arsenic 

species, and then higher urinary ∑As levels. To address this question, future studies should 

study the relation of arsenic exposure among pregnant women with symptomatic HEV 

disease because this may reflect dynamics of more severe metabolic stress on the liver than 

among asymptomatic HEV infections observed in our study. The small sample size 

precluded a more extensive analysis of confounding and/or effect measure modification. 

Micronutrients included in our analysis were those known to influence one-carbon 

metabolism and arsenic metabolism (folate) (Gamble et al., 2006) and those hypothesized to 

be associated with immune response (zinc, vitamin D) (Bartley,2010; Mahalanabis et al., 

2004). However, given that all women in this nested case-control study received antenatal 

multiple micronutrients at a daily requirement level or the same level of iron-folic acid alone 

as part of an intervention trial, future studies should be conducted among women not 

receiving micronutrient supplements in order to assess the potential impact of micronutrient 

deficiency status on arsenic exposure, infection, and immune response.

5. Conclusions

Our findings contribute to understanding arsenic immunotoxic effects during pregnancy and 

postpartum. In Bangladesh, a large proportion of the population relies on water from tube 

wells that are contaminated with arsenic (Karagas, 2010). In Bangladesh and other areas 

where genotype 1 HEV is endemic, transmission occurs via the fecal-oral route principally 

via fecally-contaminated surface water. During pregnancy, it may be important to consider 

the context of exposure to arsenic and HEV (as well as other pathogens related to water, 

hygiene, and sanitation conditions). In rural Bangladesh, near the location of the present 

study, HEV seroprevalence estimates range between 20% and 23% (Labrique et al., 2010) 

and have been observed as high as 40–80% in other areas of Bangladesh (Mahtab et al., 
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2009). With such high HEV endemicity and co-occurring arsenic exposure, if the 

associations we observed are causal, the population at risk could be large. A more complete 

understanding of the effects of arsenic on immune alterations and other infectious diseases 

during pregnancy could inform interventions to reduce morbidity and mortality where 

exposure to pathogenic and immunotoxic agents co-exists.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Trends of inorganic arsenic plus methylated species (∑As) concentration (µg/L) in urine 

during the 1st and 3rd trimester (TM) of pregnancy among: A. HEV seroconverting (n = 40) 

and B. non-seroconverting (n = 39) women. Gray lines depict individual trajectories for each 

pregnant woman and the black line denotes the median trajectory within each group. Note. 

The p-value shown compares 1st and 3rd TM urinary ∑As derived from Fisher's exact test of 

the equality of medians. The beta (standard error), p-value from a linear mixed model of the 

temporal association between trimester (3rd vs 1st) and ln-transformed ∑As concentration 

(µg/L) was −0.27 (0.13), p < 0.04 among HEV seroconverters and −0.34 (0.11), p < 0.003 

among non-seroconverters.
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Table 1

Participant characteristics at 1st trimester of pregnancy by HEV seroconversion status.

HEV
seroconverters

Non-
seroconverter

pa

N 40 40

Age (years) 22.1 (4.7) 22.1 (4.6) 1

Parity 0.9 (0.91) 0.9 (0.92) 1

Gestational age at enrollment (weeks) 10.1 (3.3) 11.5 (5.1) 0.23

Weight (kg) 43.0 (8.2) 44.0 (6.5) 0.52

Height (cm) 148.9 (4.8) 148.7 (4.9) 0.94

BMI (kg/m2) 19.3 (3.4) 19.9 (2.5) 0.17

BMI < 18.5 (%) 43 25 0.10

MUAC (cm) 23.4 (3.0) 24.3 (3.4) 0.21

MUAC ≤ 22.5 cm (%) 35 23 0.22

Plasma

  Folate (nmol/L) 21.1 (8.0) 20.5 (9.7) 0.68

  Vitamin D (nmol/L) 39.8 (6.0) 41.0 (11.3) 0.57

  Zinc (µmol/L) 11.5 (2.0) 12.5 (2.3) 0.04

  Living standards index 0.04 (1.05) 0.09 (1.13) 0.93

Season (%)

  Summer 25 28 0.80

  Rainy 55 48 0.50

  Winter 20 25 0.59

Note. Data are mean (standard deviation) or %. Participants were matched on age, parity and nutritional intervention. BMI = body mass index. 
MUAC = middle-upper arm circumference. Summer consists of January to May; Rainy of June to August; and Winter of September to December.

a
p derived from Wilcoxon rank-sum test for continuous variables, proportion test for categorical and binary variables.

Environ Res. Author manuscript; available in PMC 2016 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heaney et al. Page 15

T
ab

le
 2

M
ed

ia
n 

(i
nt

er
qu

ar
til

e 
ra

ng
e 

– 
IQ

R
) 

ar
se

ni
c 

co
nc

en
tr

at
io

ns
 (

µg
/L

) 
an

d 
pe

rc
en

t a
rs

en
ic

 m
et

ab
ol

ite
s 

du
ri

ng
 p

re
gn

an
cy

 b
y 

H
E

V
 s

er
oc

on
ve

rs
io

n 
st

at
us

.

H
E

V
se

ro
co

nv
er

te
r

pa
N

on
-

se
ro

co
nv

er
te

r
pa

pb

A
rs

en
ob

et
ai

ne
 (

µg
/L

)

  1
st

 T
M

1.
2 

(0
.8

, 1
.8

)
1.

5 
(1

.0
, 2

.5
)

0.
26

  3
rd

 T
M

0.
6 

(0
.4

, 1
.1

)
0.

01
0.

7 
(0

.5
, 1

.1
)

<
 0

.0
01

0.
82

∑
A

s 
(µ

g/
L

)

  1
st

 T
M

65
.6

 (
40

.8
, 1

32
.8

)
61

.6
 (

37
.0

, 8
2.

2)
1.

00

  3
rd

 T
M

64
.7

 (
26

.2
, 1

05
.9

)
1.

00
35

.9
 (

25
.6

, 7
7.

4)
0.

00
2

0.
03

%
 D

M
A

  1
st

 T
M

76
.7

 (
74

.3
, 8

0.
5)

80
.3

 (
75

.6
, 8

2.
9)

0.
00

3

  3
rd

 T
M

84
.3

 (
80

.4
, 8

7.
3)

<
 0

.0
01

84
.8

 (
78

.6
, 8

8.
1)

0.
00

3
0.

50

%
 M

M
A

  1
st

 T
M

7.
6 

(5
.8

, 9
.6

)
6.

7 
(4

.7
, 8

.7
)

0.
50

  3
rd

 T
M

4.
8 

(4
.1

, 7
.0

)
0.

01
5.

0 
(3

.7
, 6

.3
)

0.
03

0.
82

%
 A

s(
V

) 
+

 A
s(

II
I)

  1
st

 T
M

14
.7

 (
12

, 1
8)

13
.1

 (
11

, 1
7)

0.
12

  3
rd

 T
M

10
.2

 (
7.

9,
 1

3)
0.

00
1

9.
9 

(7
.4

, 1
3)

0.
07

0.
37

T
ot

al
 A

s 
(µ

g/
L

)

  1
st

 T
M

75
.8

 (
41

.3
, 1

36
.0

)
63

.6
 (

44
.6

, 8
5.

9)
0.

50

  3
rd

 T
M

66
.4

 (
27

.9
, 1

19
.2

)
0.

82
37

.7
 (

27
.4

, 7
9.

5)
0.

00
7

0.
03

N
ot

e.
 T

M
 =

 tr
im

es
te

r.
 P

P 
=

 p
os

tp
ar

tu
m

. ∑
A

s 
=

 in
or

ga
ni

c 
ar

se
ni

c 
pl

us
 m

et
hy

la
te

d 
sp

ec
ie

s.
 A

s 
=

 a
rs

en
ic

. D
M

A
 =

 d
im

et
hy

la
rs

in
ic

 a
ci

d.
 M

M
A

 =
 m

et
hy

la
rs

on
ic

 a
ci

d.

a p 
de

ri
ve

d 
fr

om
 F

is
he

r's
 e

xa
ct

 te
st

 o
f 

th
e 

eq
ua

lit
y 

of
 m

ed
ia

ns
 c

om
pa

ri
ng

 1
st

 a
nd

 3
rd

 T
M

.

b p 
de

ri
ve

d 
fr

om
 F

is
he

r's
 e

xa
ct

 te
st

 o
f 

th
e 

eq
ua

lit
y 

of
 m

ed
ia

ns
 c

om
pa

ri
ng

 H
E

V
 s

er
oc

on
ve

rt
er

s 
to

 n
on

-s
er

oc
on

ve
rt

er
s.

Environ Res. Author manuscript; available in PMC 2016 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heaney et al. Page 16

T
ab

le
 3

O
dd

s 
ra

tio
 (

95
%

 c
on

fi
de

nc
e 

in
te

rv
al

) 
of

 in
ci

de
nt

 H
E

V
 s

er
oc

on
ve

rs
io

n 
du

ri
ng

 p
re

gn
an

cy
 p

er
 in

te
rq

ua
rt

ile
-r

an
ge

 c
ha

ng
e 

in
 u

ri
na

ry
 Σ

A
s 

co
nc

en
tr

at
io

n 

(µ
g/

L
) 

an
d 

in
 a

rs
en

ic
 m

et
hy

la
tio

n 
pr

of
ile

s 
(%

M
M

A
 a

nd
 %

D
M

A
).

O
R

95
%

 C
I

p
aO

R
a

95
%

 C
I

p

IQ
R

-u
ni

t c
ha

ng
e 

in
 Σ

A
s 

(µ
g/

L
)

  1
st

 T
M

1.
52

0.
92

, 2
.5

1
0.

10
2.

06
1.

07
, 3

.9
7

0.
03

  3
rd

 T
M

1.
42

0.
85

, 2
.3

6
0.

18
1.

52
0.

88
, 2

.6
4

0.
14

  A
ve

ra
ge

 (
1s

t a
nd

 3
rd

 T
M

)
1.

53
0.

90
, 2

.6
0

0.
03

2.
17

1.
07

, 4
.3

9
0.

03

IQ
R

-u
ni

t c
ha

ng
e 

in
 %

 M
M

A

  1
st

 T
M

2.
07

0.
89

, 4
.8

2
0.

09
1.

93
0.

81
, 4

.5
9

0.
14

  3
rd

 T
M

1.
62

0.
93

, 2
.8

3
0.

09
1.

53
0.

86
, 2

.7
2

0.
15

  A
ve

ra
ge

 (
1s

t a
nd

 3
rd

 T
M

)
1.

79
0.

90
, 3

.5
9

0.
10

1.
77

0.
84

, 3
.7

4
0.

13

IQ
R

-u
ni

t c
ha

ng
e 

in
 %

 D
M

A

  1
st

 T
M

0.
63

0.
37

, 1
.0

8
0.

09
0.

54
0.

27
, 1

.0
6

0.
07

  3
rd

 T
M

0.
63

0.
36

, 1
.0

8
0.

09
0.

55
0.

29
, 1

.0
6

0.
07

  A
ve

ra
ge

 (
1s

t a
nd

 3
rd

 T
M

)
0.

74
0.

43
, 1

.2
6

0.
26

0.
69

0.
38

, 1
.2

5
0.

22

N
ot

e.
 O

R
 =

 o
dd

s 
ra

tio
. C

I 
=

 c
on

fi
de

nc
e 

in
te

rv
al

. I
Q

R
 =

 in
te

rq
ua

rt
ile

 r
an

ge
. ∑

A
s 

=
 in

or
ga

ni
c 

ar
se

ni
c 

pl
us

 m
et

hy
la

te
d 

sp
ec

ie
s.

 T
M

, t
ri

m
es

te
r.

 D
M

A
 =

 d
im

et
hy

la
rs

in
ic

 a
ci

d.
 M

M
A

 =
 m

et
hy

la
rs

on
ic

 a
ci

d.

a A
dj

us
te

d 
fo

r 
liv

in
g 

st
an

da
rd

s 
in

de
x 

an
d 

pl
as

m
a 

co
nc

en
tr

at
io

n 
of

 f
ol

at
e 

(n
m

ol
/L

),
 v

ita
m

in
 D

 (
nm

ol
/L

) 
an

d 
zi

nc
 (

µm
ol

/L
).

Environ Res. Author manuscript; available in PMC 2016 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heaney et al. Page 17

T
ab

le
 4

G
en

er
al

iz
ed

 li
ne

ar
 m

ix
ed

 r
eg

re
ss

io
n 

m
od

el
s 

of
 th

e 
as

so
ci

at
io

n 
of

 te
m

po
ra

l c
ha

ng
es

 in
 p

la
sm

a 
IL

-2
 c

on
ce

nt
ra

tio
ns

 (
pg

/m
L

) 
w

ith
 a

n 
in

te
rq

ua
rt

ile
 r

an
ge

-u
ni

t 

ch
an

ge
 in

 u
ri

na
ry

 in
or

ga
ni

c 
ar

se
ni

c 
pl

us
 m

et
hy

la
te

d 
sp

ec
ie

s 
(∑

A
s)

 c
on

ce
nt

ra
tio

n 
(µ

g/
L

) 
du

ri
ng

 p
re

gn
an

cy
 b

y 
H

E
V

 s
er

oc
on

ve
rs

io
n 

st
at

us
.

H
E

V
 s

er
oc

on
ve

rt
er

In
te

rl
eu

ki
n 

2 
(I

L
-2

)
N

on
-s

er
oc

on
ve

rt
er

In
te

rl
eu

ki
n 

2 
(I

L
-2

)

N
B

et
a 

(9
5%

 C
I)

a
pa

N
B

et
a 

(9
5%

 C
I)

a
pa

p-
in

te
ra

ct
io

nb

IL
-2

 (
1s

t T
M

, 3
rd

 T
M

, 3
 m

on
th

s 
PP

)

  ∑
A

s 
(1

st
 T

M
)

12
0

0.
46

 (
0.

23
, 0

.6
8)

<
 0

.0
00

1
12

0
−

0.
03

 (
−

0.
39

, 0
.3

4)
0.

88
0.

02

IL
-2

 (
3r

d 
T

M
 &

 3
 m

on
th

s 
PP

)

  ∑
A

s 
(3

rd
 T

M
)

80
0.

18
 (

−
0.

03
, 0

.3
9)

0.
09

78
0.

04
 (

−
0.

21
, 0

.2
9)

0.
78

0.
38

  ∑
A

s 
(A

ve
ra

ge
)c

80
0.

35
 (

0.
12

, 0
.5

8)
0.

00
3

78
0.

01
 (

−
0.

29
, 0

.3
1)

0.
96

0.
07

N
ot

e.
 T

M
 =

 tr
im

es
te

r.
 P

P 
=

 p
os

tp
ar

tu
m

. F
or

 I
L

-2
 c

on
ce

nt
ra

tio
ns

 b
el

ow
 th

e 
lim

it 
of

 d
et

ec
tio

n,
 1

/2
 th

e 
lim

it 
w

as
 im

pu
te

d.
 C

I 
=

 c
on

fi
de

nc
e 

in
te

rv
al

. ∑
A

s 
=

 in
or

ga
ni

c 
ar

se
ni

c 
pl

us
 m

et
hy

la
te

d 
sp

ec
ie

s.

a B
et

a 
co

ef
fi

ci
en

t, 
95

%
 C

I,
 a

nd
 p

 d
er

iv
ed

 f
ro

m
 g

en
er

al
iz

ed
 li

ne
ar

 m
ix

ed
 r

eg
re

ss
io

n 
m

od
el

s 
w

ith
 p

re
gn

an
t w

om
en

's
 r

ep
ea

te
d 

IL
-2

 (
pg

/m
L

) 
m

ea
su

re
m

en
ts

 a
s 

de
pe

nd
en

t v
ar

ia
bl

e.

b p-
va

lu
e 

de
ri

ve
d 

fr
om

 a
 1

 d
f 

lik
el

ih
oo

d 
ra

tio
 te

st
 o

f 
in

te
ra

ct
io

n 
be

tw
ee

n 
∑

A
s 

an
d 

se
ro

co
nv

er
si

on
 s

ta
tu

s 
in

 a
 g

en
er

al
iz

ed
 li

ne
ar

 m
ix

ed
 m

od
el

.

c A
ve

ra
ge

 o
f 

1s
t a

nd
 3

rd
 T

M
 u

ri
na

ry
 ∑

A
s.

Environ Res. Author manuscript; available in PMC 2016 October 01.


